Featured image of post SBCTF wintercamp2024 个人部分wp

SBCTF wintercamp2024 个人部分wp

SBCTF wintercamp2024 个人部分wp

Week2 - Misc - ez_brainfuzz

Description

和靶机交互,发送一段Brainfuck代码,靶机会返回输出和flag的md5的相似度. 如果完全一致就会给出flag

Solution

暴力枚举即可,注意到md5是32位的hex,直接枚举每一位即可,枚举第 $i$ 位时把其他位用'z'补齐即可,这样如果这一位是正确的,给出的相似度应该大于0,反之则没有任何位相同,应该得到0%。

对于要输出的字符串,生成Brainfxxk代码

1
2
3
4
5
6
7
def generate_brainfuck_code(input_string):
    brainfuck_code = ""
    for char in input_string:
        ascii_value = ord(char)
        brainfuck_code += "+" * ascii_value + "."
        brainfuck_code += ">"
    return brainfuck_code

枚举

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def get_predict(c, index):
    st = ""
    for ind in range(32):
        if ind == index:
            st += c
        else:
            st += "z"
    return st

hex_list = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']

host=''
port=

if __name__ == "__main__":
    conn = remote(host=host,port=port)
    print(conn.recv().decode())
    ans = ""
    for pos in range(32):
        this_ans = ""
        for pred in hex_list:
            check = get_predict(pred, pos)
            print(check)
            check = generate_brainfuck_code(check)
            conn.send(check + "\n")
            ret = conn.recv().decode()
            print(ret)
            sm = float(ret.split("%")[0].split(":")[1])
            if sm > 0:
                this_ans = pred
                break
        ans += this_ans
        print(ans)

Week2 - Misc - qrazy_pic_encode

Description

解密二维码图片,加密方式是:

若源图片中这个像素为黑色:加密后变为20个随机数经过离散余弦变换(Discrete Cosine Transform)并去除第0位得到的19个值。

若源图片中这个像素为白色:加密后变为20个随机数经过两次离散余弦变换(Discrete Cosine Transform)并去除第0位得到的19个值。

Solution

注意到是二分类问题,直接逻辑回归即可

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import ast
from PIL import Image
import random
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from scipy.fftpack import dct

datas=[]
labels=[]

def normalize(lst):
    min_value = min(lst)
    max_value = max(lst)
    normalized_values = [(x - min_value) / (max_value - min_value) for x in lst]
    return normalized_values

#generate dataset/label
for i in range(50000):
    y = [random.random() for _ in range(20)]
    y1 = dct(y)
    if i%2:
        y1 = dct(y1)
    datas.append(normalize(y1[1:]))
    labels.append(i%2)
X_train, X_test, y_train, y_test = train_test_split(
    datas, labels, test_size=0.2, random_state=42
)
print('data generated')

#train model on CPU
model = LogisticRegression()
model.fit(X_train, y_train)
print('model trained')

#test model
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

#decode picture
with open("out.txt", "r") as f:
    data = f.read()

data = ast.literal_eval(data)

print(len(data))

img = [model.predict([data[i : i + 19]])[0] for i in range(0, len(data), 19)]
img = np.array(img).reshape((37, 37))
Image.fromarray(img * 255).convert("L").save("decrypted.png")
署名-非商业性使用-相同方式共享 4.0 国际
最后更新于 2024/12/14 19:24 CST